## OPUS

Mobile Marked and Unmarked Speed Cameras: Their time and distance halos and relative effectiveness in reducing speeds

Bill Frith and Tiffany Lester Opus Research, Wellington

## Acknowledgements

Thanks to:

- The NZTA which provided funding
- Fergus Tate who was the NZTA project owner


## Method

Mobile speed cameras were deployed at:
$>$ A flat 1.7 kilometre section with a speed limit of $70 \mathrm{~km} / \mathrm{hr}$.
$>$ A flat 1.8 kilometre section with a speed limit of $50 \mathrm{~km} / \mathrm{hr}$.
$>$ A flat 4.2 kilometre stretch of rural state highway with a speed limit of $100 \mathrm{~km} / \mathrm{h}$
The $70 \mathrm{~km} / \mathrm{hr}$ and $50 \mathrm{~km} / \mathrm{hr}$ sites were adjacent to each other
Both unmarked and marked camera vehicles were used
$>$ Speeds were measured in the vicinity of the sites with and without the presence of camera vans.
> The extent of time and distance halo effects was investigated as was the effectiveness of marked and unmarked camera vans in reducing speeds.


## Method continued

$>$ Speeds were measured using rubber tubes attached to a Metrocounter to measure speeds and count traffic
> One camera deployment position was used at each of the urban sites and three camera deployment positions at the rural site.
$>$ Marked and unmarked camera vans were deployed for various shifts at each site over two, three day periods; one three day period for each type of camera van.
> There were also days on which speed was measured with no cameras operating, in order to provide a baseline comparison.
> There were no occasions when cameras were simultaneously deployed at both the urban sites as the same camera vehicle covered both sites.

## 50km/hr and 7okm/hr sites


$\square$

## 100km/hr site


,

## Analysis

Analyses were performed using speed data from
'unimpeded" vehicles with headway of at least 4 seconds from the nearest vehicle in front.
The main speed-related variables used were:
$>$ the median speed (a measure relating to the centre of the speed distribution) and
$>$ the $85^{\text {th }}$ percentile speed (a measure relating to the upper end of the speed distribution).
The median was used instead of the mean to minimise the impact of outliers (possibly due to equipment malfunction) on the analysis.

## Analysis continued

$>$ The analysis for time halos uses CUSUM charts
$>$ These charts plot the cumulative sum of deviations of a variable from a steady state reference value.
$>$ An increase from the steady state is signalled by an increase in slope of the CUSUM chart
$>$ A decrease from the steady state is signalled by a decrease in the slope of the CUSUM chart

## Results

## Time halos and distance halos

$>$ Mobile speed cameras impact motorists' speeds at the time and place of deployment
$>$ They also impact them at distance away from the site of deployment (distance halo) and at a time away from the time of deployment (time halo)
$>$ Time and distance halos depend on the specific circumstances in which the enforcement is being carried out.

## Time halos at $50 \mathrm{~km} / \mathrm{hr}$ site $\sim 45 \mathrm{~min}$ for unmarked; 1 hr for marked vehicle

Unmarked vehicle Marked vehicle


Time halos at $\mathbf{7 0} \mathbf{~ k m} / \mathrm{hr}$ site $\boldsymbol{\sim} \mathbf{1} \mathbf{~ h r}$ for both types of vehicle

## Unmarked vehicle



Time halos at $70 \mathbf{k m} / \mathrm{hr}$ site $\boldsymbol{\sim} \mathbf{1} \mathbf{~ h r}$ for both types of vehicle

| Unmarked vehicle | Marked vehicle |
| :---: | :---: |
| OSHU | 4онм |
| -Sautbounc | ${ }^{85}$ |
|  | 年75 - |
|  |  |
|  <br> Camera turned off at 18:51 $\qquad$ |  $\qquad$ |
| OSH | 40 MM |
| -. Sathlound Sxit | ${ }_{30}$ |
| R |  |
| $\bigcirc$ |  |
|  $\qquad$ Camera turned off at 18:51 median |  |

## Time halos at $100 \mathrm{~km} / \mathrm{hr}$ site. For both deployment types speeds rose immediately deployment ceased

## Unmarked vehicle Marked vehicle



## Distance halos at 50km/hr site~ 500 metres

Speeds at speed measurement sites for traffic moving in a northerly direction


Speeds at speed measurement sites for traffic moving in a southerly direction


## Distance halos at 7okm/hr site $\sim \mathbf{5 0 0}$ metres

Speeds at speed measurement sites for traffic moving in a northerly direction


Speeds at speed measurement sites for traffic moving in a southerly direction


## Distance halos at $100 \mathrm{~km} / \mathrm{hr}$ site $\sim \mathbf{1} \mathbf{~ k m}$



Speeds at speed measurement sites for traffic moving in a southerly direction


## Length of time before motorists sped up

Whatever the speed limit or the camera vehicle, motorists tended to speed up again a little over half a minute after they passed the camera vehicles.

## Overall speeds

Will look at the cumulative distributions of speeds at the camera sites during daytime hours with:
$>$ Marked camera vehicle present >Unmarked camera vehicle present
$>$ No camera vehicle present

7okm/hr site


## $50 \mathrm{~km} / \mathrm{hr}$ site




## $100 \mathrm{~km} / \mathrm{hr}$ site



## Summary of overall speed distributions

$>$ In all cases the speeds were lower in the presence of cameras than without cameras,
> The marked cameras were the more effective cameras at reducing speeds at the $50 \mathrm{~km} / \mathrm{hr}$ and $70 \mathrm{~km} / \mathrm{hr}$ sites
$>$ The marked camera vehicles performed only slightly better than the unmarked camera vehicles


## Conclusions

$>$ Both marked and unmarked cameras reducing speeds in their immediate vicinities
$>$ Marked cameras were more effective but the difference was small
$>$ A time halo of around an hour at the 50 and $70 \mathrm{~km} / \mathrm{hr}$ sites
$>$ No evidence of a time halo at the $100 \mathrm{~km} / \mathrm{hr}$ location.
$>$ A distance halo of around 500 metres for the $50 \mathrm{~km} / \mathrm{hr}$ and 70 $\mathrm{km} / \mathrm{hr}$ sites and 1 kilometre for the $100 \mathrm{~km} / \mathrm{hr}$ site.
$>$ Both distances would be a little over half a minute of travel at the speed limit.
> These halo effects applied for both marked and unmarked vehicles
> The distance halos are consistent with the small number of mobile cameras in New Zealand

